sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2380, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,9,10,6]))
pari:[g,chi] = znchar(Mod(33,2380))
\(\chi_{2380}(33,\cdot)\)
\(\chi_{2380}(577,\cdot)\)
\(\chi_{2380}(1053,\cdot)\)
\(\chi_{2380}(1937,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1191,477,1361,1261)\) → \((1,-i,e\left(\frac{5}{6}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) | \(33\) |
\( \chi_{ 2380 }(33, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) |
sage:chi.jacobi_sum(n)