Properties

Label 2380.213
Modulus $2380$
Conductor $595$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,18,4,3]))
 
Copy content pari:[g,chi] = znchar(Mod(213,2380))
 

Basic properties

Modulus: \(2380\)
Conductor: \(595\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{595}(213,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2380.en

\(\chi_{2380}(117,\cdot)\) \(\chi_{2380}(213,\cdot)\) \(\chi_{2380}(257,\cdot)\) \(\chi_{2380}(773,\cdot)\) \(\chi_{2380}(1137,\cdot)\) \(\chi_{2380}(1277,\cdot)\) \(\chi_{2380}(1573,\cdot)\) \(\chi_{2380}(2133,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((1191,477,1361,1261)\) → \((1,-i,e\left(\frac{1}{6}\right),e\left(\frac{1}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(19\)\(23\)\(27\)\(29\)\(31\)\(33\)
\( \chi_{ 2380 }(213, a) \) \(1\)\(1\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{13}{24}\right)\)\(i\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{1}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2380 }(213,a) \;\) at \(\;a = \) e.g. 2