Properties

Label 2380.1219
Modulus $2380$
Conductor $340$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,8,0,13]))
 
Copy content pari:[g,chi] = znchar(Mod(1219,2380))
 

Basic properties

Modulus: \(2380\)
Conductor: \(340\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{340}(199,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2380.eb

\(\chi_{2380}(99,\cdot)\) \(\chi_{2380}(379,\cdot)\) \(\chi_{2380}(1219,\cdot)\) \(\chi_{2380}(1499,\cdot)\) \(\chi_{2380}(1639,\cdot)\) \(\chi_{2380}(1779,\cdot)\) \(\chi_{2380}(2199,\cdot)\) \(\chi_{2380}(2339,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.73278030118651284300800000000.1

Values on generators

\((1191,477,1361,1261)\) → \((-1,-1,1,e\left(\frac{13}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(19\)\(23\)\(27\)\(29\)\(31\)\(33\)
\( \chi_{ 2380 }(1219, a) \) \(1\)\(1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(-i\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2380 }(1219,a) \;\) at \(\;a = \) e.g. 2