sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2352, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([0,63,42,22]))
pari:[g,chi] = znchar(Mod(845,2352))
| Modulus: | \(2352\) | |
| Conductor: | \(2352\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2352}(5,\cdot)\)
\(\chi_{2352}(101,\cdot)\)
\(\chi_{2352}(173,\cdot)\)
\(\chi_{2352}(269,\cdot)\)
\(\chi_{2352}(341,\cdot)\)
\(\chi_{2352}(437,\cdot)\)
\(\chi_{2352}(605,\cdot)\)
\(\chi_{2352}(677,\cdot)\)
\(\chi_{2352}(773,\cdot)\)
\(\chi_{2352}(845,\cdot)\)
\(\chi_{2352}(941,\cdot)\)
\(\chi_{2352}(1013,\cdot)\)
\(\chi_{2352}(1181,\cdot)\)
\(\chi_{2352}(1277,\cdot)\)
\(\chi_{2352}(1349,\cdot)\)
\(\chi_{2352}(1445,\cdot)\)
\(\chi_{2352}(1517,\cdot)\)
\(\chi_{2352}(1613,\cdot)\)
\(\chi_{2352}(1781,\cdot)\)
\(\chi_{2352}(1853,\cdot)\)
\(\chi_{2352}(1949,\cdot)\)
\(\chi_{2352}(2021,\cdot)\)
\(\chi_{2352}(2117,\cdot)\)
\(\chi_{2352}(2189,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1471,1765,785,2257)\) → \((1,-i,-1,e\left(\frac{11}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
| \( \chi_{ 2352 }(845, a) \) |
\(1\) | \(1\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{84}\right)\) |
sage:chi.jacobi_sum(n)