Properties

Label 2349.323
Modulus $2349$
Conductor $87$
Order $14$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,1]))
 
Copy content pari:[g,chi] = znchar(Mod(323,2349))
 

Basic properties

Modulus: \(2349\)
Conductor: \(87\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{87}(62,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2349.o

\(\chi_{2349}(80,\cdot)\) \(\chi_{2349}(323,\cdot)\) \(\chi_{2349}(647,\cdot)\) \(\chi_{2349}(1376,\cdot)\) \(\chi_{2349}(1862,\cdot)\) \(\chi_{2349}(2267,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.0.22439994995240462987343.1

Values on generators

\((407,1945)\) → \((-1,e\left(\frac{1}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 2349 }(323, a) \) \(-1\)\(1\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{2}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2349 }(323,a) \;\) at \(\;a = \) e.g. 2