sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2349, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([28,15]))
pari:[g,chi] = znchar(Mod(757,2349))
\(\chi_{2349}(55,\cdot)\)
\(\chi_{2349}(217,\cdot)\)
\(\chi_{2349}(271,\cdot)\)
\(\chi_{2349}(298,\cdot)\)
\(\chi_{2349}(379,\cdot)\)
\(\chi_{2349}(433,\cdot)\)
\(\chi_{2349}(514,\cdot)\)
\(\chi_{2349}(541,\cdot)\)
\(\chi_{2349}(595,\cdot)\)
\(\chi_{2349}(757,\cdot)\)
\(\chi_{2349}(838,\cdot)\)
\(\chi_{2349}(946,\cdot)\)
\(\chi_{2349}(1000,\cdot)\)
\(\chi_{2349}(1081,\cdot)\)
\(\chi_{2349}(1162,\cdot)\)
\(\chi_{2349}(1324,\cdot)\)
\(\chi_{2349}(1432,\cdot)\)
\(\chi_{2349}(1729,\cdot)\)
\(\chi_{2349}(1837,\cdot)\)
\(\chi_{2349}(1999,\cdot)\)
\(\chi_{2349}(2080,\cdot)\)
\(\chi_{2349}(2161,\cdot)\)
\(\chi_{2349}(2215,\cdot)\)
\(\chi_{2349}(2323,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((407,1945)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{5}{28}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 2349 }(757, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{1}{21}\right)\) |
sage:chi.jacobi_sum(n)