sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2349, base_ring=CyclotomicField(756))
M = H._module
chi = DirichletCharacter(H, M([392,135]))
pari:[g,chi] = znchar(Mod(322,2349))
Modulus: | \(2349\) | |
Conductor: | \(2349\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(756\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2349}(31,\cdot)\)
\(\chi_{2349}(40,\cdot)\)
\(\chi_{2349}(43,\cdot)\)
\(\chi_{2349}(61,\cdot)\)
\(\chi_{2349}(76,\cdot)\)
\(\chi_{2349}(79,\cdot)\)
\(\chi_{2349}(85,\cdot)\)
\(\chi_{2349}(97,\cdot)\)
\(\chi_{2349}(106,\cdot)\)
\(\chi_{2349}(124,\cdot)\)
\(\chi_{2349}(130,\cdot)\)
\(\chi_{2349}(142,\cdot)\)
\(\chi_{2349}(148,\cdot)\)
\(\chi_{2349}(160,\cdot)\)
\(\chi_{2349}(166,\cdot)\)
\(\chi_{2349}(184,\cdot)\)
\(\chi_{2349}(193,\cdot)\)
\(\chi_{2349}(205,\cdot)\)
\(\chi_{2349}(211,\cdot)\)
\(\chi_{2349}(214,\cdot)\)
\(\chi_{2349}(229,\cdot)\)
\(\chi_{2349}(247,\cdot)\)
\(\chi_{2349}(250,\cdot)\)
\(\chi_{2349}(259,\cdot)\)
\(\chi_{2349}(292,\cdot)\)
\(\chi_{2349}(301,\cdot)\)
\(\chi_{2349}(304,\cdot)\)
\(\chi_{2349}(322,\cdot)\)
\(\chi_{2349}(337,\cdot)\)
\(\chi_{2349}(340,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((407,1945)\) → \((e\left(\frac{14}{27}\right),e\left(\frac{5}{28}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 2349 }(322, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{527}{756}\right)\) | \(e\left(\frac{149}{378}\right)\) | \(e\left(\frac{323}{378}\right)\) | \(e\left(\frac{83}{189}\right)\) | \(e\left(\frac{23}{252}\right)\) | \(e\left(\frac{139}{252}\right)\) | \(e\left(\frac{155}{756}\right)\) | \(e\left(\frac{137}{378}\right)\) | \(e\left(\frac{103}{756}\right)\) | \(e\left(\frac{149}{189}\right)\) |
sage:chi.jacobi_sum(n)