sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2349, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([70,39]))
pari:[g,chi] = znchar(Mod(1754,2349))
\(\chi_{2349}(26,\cdot)\)
\(\chi_{2349}(134,\cdot)\)
\(\chi_{2349}(188,\cdot)\)
\(\chi_{2349}(269,\cdot)\)
\(\chi_{2349}(350,\cdot)\)
\(\chi_{2349}(512,\cdot)\)
\(\chi_{2349}(620,\cdot)\)
\(\chi_{2349}(917,\cdot)\)
\(\chi_{2349}(1025,\cdot)\)
\(\chi_{2349}(1187,\cdot)\)
\(\chi_{2349}(1268,\cdot)\)
\(\chi_{2349}(1349,\cdot)\)
\(\chi_{2349}(1403,\cdot)\)
\(\chi_{2349}(1511,\cdot)\)
\(\chi_{2349}(1592,\cdot)\)
\(\chi_{2349}(1754,\cdot)\)
\(\chi_{2349}(1808,\cdot)\)
\(\chi_{2349}(1835,\cdot)\)
\(\chi_{2349}(1916,\cdot)\)
\(\chi_{2349}(1970,\cdot)\)
\(\chi_{2349}(2051,\cdot)\)
\(\chi_{2349}(2078,\cdot)\)
\(\chi_{2349}(2132,\cdot)\)
\(\chi_{2349}(2294,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((407,1945)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{13}{28}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 2349 }(1754, a) \) |
\(1\) | \(1\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{4}{21}\right)\) |
sage:chi.jacobi_sum(n)