Properties

Label 2349.1277
Modulus $2349$
Conductor $27$
Order $18$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([7,0]))
 
Copy content pari:[g,chi] = znchar(Mod(1277,2349))
 

Basic properties

Modulus: \(2349\)
Conductor: \(27\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{27}(20,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2349.s

\(\chi_{2349}(233,\cdot)\) \(\chi_{2349}(494,\cdot)\) \(\chi_{2349}(1016,\cdot)\) \(\chi_{2349}(1277,\cdot)\) \(\chi_{2349}(1799,\cdot)\) \(\chi_{2349}(2060,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((407,1945)\) → \((e\left(\frac{7}{18}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 2349 }(1277, a) \) \(-1\)\(1\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{5}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2349 }(1277,a) \;\) at \(\;a = \) e.g. 2