Properties

Label 2340.2083
Modulus $2340$
Conductor $2340$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,4,9,4]))
 
Copy content pari:[g,chi] = znchar(Mod(2083,2340))
 

Basic properties

Modulus: \(2340\)
Conductor: \(2340\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2340.gr

\(\chi_{2340}(763,\cdot)\) \(\chi_{2340}(1147,\cdot)\) \(\chi_{2340}(2083,\cdot)\) \(\chi_{2340}(2167,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.280916262064126728000000000.2

Values on generators

\((1171,2081,937,1081)\) → \((-1,e\left(\frac{1}{3}\right),-i,e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2340 }(2083, a) \) \(1\)\(1\)\(i\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(-i\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{12}\right)\)\(1\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2340 }(2083,a) \;\) at \(\;a = \) e.g. 2