Properties

Label 232.209
Modulus $232$
Conductor $29$
Order $14$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(232, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([0,0,3]))
 
Copy content pari:[g,chi] = znchar(Mod(209,232))
 

Basic properties

Modulus: \(232\)
Conductor: \(29\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{29}(6,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 232.q

\(\chi_{232}(9,\cdot)\) \(\chi_{232}(33,\cdot)\) \(\chi_{232}(121,\cdot)\) \(\chi_{232}(129,\cdot)\) \(\chi_{232}(209,\cdot)\) \(\chi_{232}(225,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Values on generators

\((175,117,89)\) → \((1,1,e\left(\frac{3}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 232 }(209, a) \) \(1\)\(1\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(-1\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{9}{14}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 232 }(209,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 232 }(209,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 232 }(209,·),\chi_{ 232 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 232 }(209,·)) \;\) at \(\; a,b = \) e.g. 1,2