sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(232, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,0,5]))
pari:[g,chi] = znchar(Mod(183,232))
\(\chi_{232}(63,\cdot)\)
\(\chi_{232}(71,\cdot)\)
\(\chi_{232}(151,\cdot)\)
\(\chi_{232}(167,\cdot)\)
\(\chi_{232}(183,\cdot)\)
\(\chi_{232}(207,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((175,117,89)\) → \((-1,1,e\left(\frac{5}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 232 }(183, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)