Properties

Label 2312.9
Modulus $2312$
Conductor $289$
Order $136$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(136)) M = H._module chi = DirichletCharacter(H, M([0,0,1]))
 
Copy content pari:[g,chi] = znchar(Mod(9,2312))
 

Basic properties

Modulus: \(2312\)
Conductor: \(289\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(136\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{289}(9,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2312.bi

\(\chi_{2312}(9,\cdot)\) \(\chi_{2312}(25,\cdot)\) \(\chi_{2312}(49,\cdot)\) \(\chi_{2312}(121,\cdot)\) \(\chi_{2312}(145,\cdot)\) \(\chi_{2312}(161,\cdot)\) \(\chi_{2312}(185,\cdot)\) \(\chi_{2312}(257,\cdot)\) \(\chi_{2312}(281,\cdot)\) \(\chi_{2312}(297,\cdot)\) \(\chi_{2312}(321,\cdot)\) \(\chi_{2312}(393,\cdot)\) \(\chi_{2312}(417,\cdot)\) \(\chi_{2312}(433,\cdot)\) \(\chi_{2312}(457,\cdot)\) \(\chi_{2312}(529,\cdot)\) \(\chi_{2312}(553,\cdot)\) \(\chi_{2312}(569,\cdot)\) \(\chi_{2312}(593,\cdot)\) \(\chi_{2312}(665,\cdot)\) \(\chi_{2312}(689,\cdot)\) \(\chi_{2312}(705,\cdot)\) \(\chi_{2312}(729,\cdot)\) \(\chi_{2312}(801,\cdot)\) \(\chi_{2312}(825,\cdot)\) \(\chi_{2312}(841,\cdot)\) \(\chi_{2312}(865,\cdot)\) \(\chi_{2312}(937,\cdot)\) \(\chi_{2312}(961,\cdot)\) \(\chi_{2312}(1073,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{136})$
Fixed field: Number field defined by a degree 136 polynomial (not computed)

Values on generators

\((1735,1157,1737)\) → \((1,1,e\left(\frac{1}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 2312 }(9, a) \) \(1\)\(1\)\(e\left(\frac{1}{136}\right)\)\(e\left(\frac{93}{136}\right)\)\(e\left(\frac{19}{136}\right)\)\(e\left(\frac{1}{68}\right)\)\(e\left(\frac{23}{136}\right)\)\(e\left(\frac{15}{34}\right)\)\(e\left(\frac{47}{68}\right)\)\(e\left(\frac{7}{68}\right)\)\(e\left(\frac{5}{34}\right)\)\(e\left(\frac{87}{136}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2312 }(9,a) \;\) at \(\;a = \) e.g. 2