Properties

Label 2312.57
Modulus $2312$
Conductor $289$
Order $272$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(272)) M = H._module chi = DirichletCharacter(H, M([0,0,15]))
 
Copy content pari:[g,chi] = znchar(Mod(57,2312))
 

Basic properties

Modulus: \(2312\)
Conductor: \(289\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(272\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{289}(57,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2312.bk

\(\chi_{2312}(41,\cdot)\) \(\chi_{2312}(57,\cdot)\) \(\chi_{2312}(73,\cdot)\) \(\chi_{2312}(97,\cdot)\) \(\chi_{2312}(105,\cdot)\) \(\chi_{2312}(113,\cdot)\) \(\chi_{2312}(129,\cdot)\) \(\chi_{2312}(177,\cdot)\) \(\chi_{2312}(193,\cdot)\) \(\chi_{2312}(201,\cdot)\) \(\chi_{2312}(209,\cdot)\) \(\chi_{2312}(233,\cdot)\) \(\chi_{2312}(241,\cdot)\) \(\chi_{2312}(265,\cdot)\) \(\chi_{2312}(313,\cdot)\) \(\chi_{2312}(337,\cdot)\) \(\chi_{2312}(345,\cdot)\) \(\chi_{2312}(369,\cdot)\) \(\chi_{2312}(377,\cdot)\) \(\chi_{2312}(385,\cdot)\) \(\chi_{2312}(401,\cdot)\) \(\chi_{2312}(449,\cdot)\) \(\chi_{2312}(465,\cdot)\) \(\chi_{2312}(473,\cdot)\) \(\chi_{2312}(481,\cdot)\) \(\chi_{2312}(505,\cdot)\) \(\chi_{2312}(521,\cdot)\) \(\chi_{2312}(537,\cdot)\) \(\chi_{2312}(585,\cdot)\) \(\chi_{2312}(601,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{272})$
Fixed field: Number field defined by a degree 272 polynomial (not computed)

Values on generators

\((1735,1157,1737)\) → \((1,1,e\left(\frac{15}{272}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 2312 }(57, a) \) \(-1\)\(1\)\(e\left(\frac{15}{272}\right)\)\(e\left(\frac{171}{272}\right)\)\(e\left(\frac{149}{272}\right)\)\(e\left(\frac{15}{136}\right)\)\(e\left(\frac{73}{272}\right)\)\(e\left(\frac{55}{68}\right)\)\(e\left(\frac{93}{136}\right)\)\(e\left(\frac{105}{136}\right)\)\(e\left(\frac{41}{68}\right)\)\(e\left(\frac{81}{272}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2312 }(57,a) \;\) at \(\;a = \) e.g. 2