Properties

Label 2312.535
Modulus $2312$
Conductor $1156$
Order $136$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(136)) M = H._module chi = DirichletCharacter(H, M([68,0,45]))
 
Copy content pari:[g,chi] = znchar(Mod(535,2312))
 

Basic properties

Modulus: \(2312\)
Conductor: \(1156\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(136\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1156}(535,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2312.bj

\(\chi_{2312}(15,\cdot)\) \(\chi_{2312}(87,\cdot)\) \(\chi_{2312}(111,\cdot)\) \(\chi_{2312}(127,\cdot)\) \(\chi_{2312}(151,\cdot)\) \(\chi_{2312}(223,\cdot)\) \(\chi_{2312}(247,\cdot)\) \(\chi_{2312}(263,\cdot)\) \(\chi_{2312}(287,\cdot)\) \(\chi_{2312}(359,\cdot)\) \(\chi_{2312}(383,\cdot)\) \(\chi_{2312}(495,\cdot)\) \(\chi_{2312}(519,\cdot)\) \(\chi_{2312}(535,\cdot)\) \(\chi_{2312}(559,\cdot)\) \(\chi_{2312}(631,\cdot)\) \(\chi_{2312}(655,\cdot)\) \(\chi_{2312}(671,\cdot)\) \(\chi_{2312}(695,\cdot)\) \(\chi_{2312}(767,\cdot)\) \(\chi_{2312}(791,\cdot)\) \(\chi_{2312}(807,\cdot)\) \(\chi_{2312}(831,\cdot)\) \(\chi_{2312}(903,\cdot)\) \(\chi_{2312}(927,\cdot)\) \(\chi_{2312}(943,\cdot)\) \(\chi_{2312}(967,\cdot)\) \(\chi_{2312}(1039,\cdot)\) \(\chi_{2312}(1063,\cdot)\) \(\chi_{2312}(1079,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{136})$
Fixed field: Number field defined by a degree 136 polynomial (not computed)

Values on generators

\((1735,1157,1737)\) → \((-1,1,e\left(\frac{45}{136}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 2312 }(535, a) \) \(-1\)\(1\)\(e\left(\frac{113}{136}\right)\)\(e\left(\frac{105}{136}\right)\)\(e\left(\frac{107}{136}\right)\)\(e\left(\frac{45}{68}\right)\)\(e\left(\frac{15}{136}\right)\)\(e\left(\frac{29}{34}\right)\)\(e\left(\frac{41}{68}\right)\)\(e\left(\frac{9}{68}\right)\)\(e\left(\frac{21}{34}\right)\)\(e\left(\frac{39}{136}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2312 }(535,a) \;\) at \(\;a = \) e.g. 2