sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2312, base_ring=CyclotomicField(136))
M = H._module
chi = DirichletCharacter(H, M([0,68,103]))
pari:[g,chi] = znchar(Mod(53,2312))
| Modulus: | \(2312\) | |
| Conductor: | \(2312\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(136\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2312}(53,\cdot)\)
\(\chi_{2312}(77,\cdot)\)
\(\chi_{2312}(93,\cdot)\)
\(\chi_{2312}(117,\cdot)\)
\(\chi_{2312}(189,\cdot)\)
\(\chi_{2312}(213,\cdot)\)
\(\chi_{2312}(229,\cdot)\)
\(\chi_{2312}(253,\cdot)\)
\(\chi_{2312}(325,\cdot)\)
\(\chi_{2312}(349,\cdot)\)
\(\chi_{2312}(365,\cdot)\)
\(\chi_{2312}(389,\cdot)\)
\(\chi_{2312}(461,\cdot)\)
\(\chi_{2312}(485,\cdot)\)
\(\chi_{2312}(501,\cdot)\)
\(\chi_{2312}(525,\cdot)\)
\(\chi_{2312}(597,\cdot)\)
\(\chi_{2312}(621,\cdot)\)
\(\chi_{2312}(637,\cdot)\)
\(\chi_{2312}(661,\cdot)\)
\(\chi_{2312}(773,\cdot)\)
\(\chi_{2312}(797,\cdot)\)
\(\chi_{2312}(869,\cdot)\)
\(\chi_{2312}(893,\cdot)\)
\(\chi_{2312}(909,\cdot)\)
\(\chi_{2312}(933,\cdot)\)
\(\chi_{2312}(1005,\cdot)\)
\(\chi_{2312}(1029,\cdot)\)
\(\chi_{2312}(1045,\cdot)\)
\(\chi_{2312}(1069,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1735,1157,1737)\) → \((1,-1,e\left(\frac{103}{136}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 2312 }(53, a) \) |
\(1\) | \(1\) | \(e\left(\frac{35}{136}\right)\) | \(e\left(\frac{127}{136}\right)\) | \(e\left(\frac{53}{136}\right)\) | \(e\left(\frac{35}{68}\right)\) | \(e\left(\frac{125}{136}\right)\) | \(e\left(\frac{16}{17}\right)\) | \(e\left(\frac{13}{68}\right)\) | \(e\left(\frac{7}{68}\right)\) | \(e\left(\frac{11}{17}\right)\) | \(e\left(\frac{121}{136}\right)\) |
sage:chi.jacobi_sum(n)