Properties

Label 2312.31
Modulus $2312$
Conductor $1156$
Order $272$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(272)) M = H._module chi = DirichletCharacter(H, M([136,0,9]))
 
Copy content pari:[g,chi] = znchar(Mod(31,2312))
 

Basic properties

Modulus: \(2312\)
Conductor: \(1156\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(272\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1156}(31,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2312.bm

\(\chi_{2312}(7,\cdot)\) \(\chi_{2312}(23,\cdot)\) \(\chi_{2312}(31,\cdot)\) \(\chi_{2312}(39,\cdot)\) \(\chi_{2312}(63,\cdot)\) \(\chi_{2312}(71,\cdot)\) \(\chi_{2312}(79,\cdot)\) \(\chi_{2312}(95,\cdot)\) \(\chi_{2312}(143,\cdot)\) \(\chi_{2312}(159,\cdot)\) \(\chi_{2312}(167,\cdot)\) \(\chi_{2312}(175,\cdot)\) \(\chi_{2312}(199,\cdot)\) \(\chi_{2312}(207,\cdot)\) \(\chi_{2312}(215,\cdot)\) \(\chi_{2312}(231,\cdot)\) \(\chi_{2312}(279,\cdot)\) \(\chi_{2312}(295,\cdot)\) \(\chi_{2312}(303,\cdot)\) \(\chi_{2312}(311,\cdot)\) \(\chi_{2312}(335,\cdot)\) \(\chi_{2312}(343,\cdot)\) \(\chi_{2312}(351,\cdot)\) \(\chi_{2312}(367,\cdot)\) \(\chi_{2312}(415,\cdot)\) \(\chi_{2312}(431,\cdot)\) \(\chi_{2312}(439,\cdot)\) \(\chi_{2312}(471,\cdot)\) \(\chi_{2312}(479,\cdot)\) \(\chi_{2312}(487,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{272})$
Fixed field: Number field defined by a degree 272 polynomial (not computed)

Values on generators

\((1735,1157,1737)\) → \((-1,1,e\left(\frac{9}{272}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 2312 }(31, a) \) \(1\)\(1\)\(e\left(\frac{145}{272}\right)\)\(e\left(\frac{157}{272}\right)\)\(e\left(\frac{171}{272}\right)\)\(e\left(\frac{9}{136}\right)\)\(e\left(\frac{71}{272}\right)\)\(e\left(\frac{33}{68}\right)\)\(e\left(\frac{15}{136}\right)\)\(e\left(\frac{131}{136}\right)\)\(e\left(\frac{11}{68}\right)\)\(e\left(\frac{239}{272}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2312 }(31,a) \;\) at \(\;a = \) e.g. 2