Properties

Label 2312.2237
Modulus $2312$
Conductor $136$
Order $16$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,8,3]))
 
Copy content pari:[g,chi] = znchar(Mod(2237,2312))
 

Basic properties

Modulus: \(2312\)
Conductor: \(136\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{136}(61,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2312.q

\(\chi_{2312}(653,\cdot)\) \(\chi_{2312}(709,\cdot)\) \(\chi_{2312}(1221,\cdot)\) \(\chi_{2312}(1405,\cdot)\) \(\chi_{2312}(1485,\cdot)\) \(\chi_{2312}(1669,\cdot)\) \(\chi_{2312}(2181,\cdot)\) \(\chi_{2312}(2237,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.48023489818559305679372288.1

Values on generators

\((1735,1157,1737)\) → \((1,-1,e\left(\frac{3}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 2312 }(2237, a) \) \(-1\)\(1\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{13}{16}\right)\)\(i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(-i\)\(e\left(\frac{13}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2312 }(2237,a) \;\) at \(\;a = \) e.g. 2