sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2312, base_ring=CyclotomicField(272))
M = H._module
chi = DirichletCharacter(H, M([136,136,23]))
pari:[g,chi] = znchar(Mod(11,2312))
| Modulus: | \(2312\) | |
| Conductor: | \(2312\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(272\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2312}(3,\cdot)\)
\(\chi_{2312}(11,\cdot)\)
\(\chi_{2312}(27,\cdot)\)
\(\chi_{2312}(91,\cdot)\)
\(\chi_{2312}(99,\cdot)\)
\(\chi_{2312}(107,\cdot)\)
\(\chi_{2312}(139,\cdot)\)
\(\chi_{2312}(147,\cdot)\)
\(\chi_{2312}(163,\cdot)\)
\(\chi_{2312}(211,\cdot)\)
\(\chi_{2312}(227,\cdot)\)
\(\chi_{2312}(235,\cdot)\)
\(\chi_{2312}(243,\cdot)\)
\(\chi_{2312}(267,\cdot)\)
\(\chi_{2312}(275,\cdot)\)
\(\chi_{2312}(283,\cdot)\)
\(\chi_{2312}(299,\cdot)\)
\(\chi_{2312}(347,\cdot)\)
\(\chi_{2312}(363,\cdot)\)
\(\chi_{2312}(371,\cdot)\)
\(\chi_{2312}(379,\cdot)\)
\(\chi_{2312}(403,\cdot)\)
\(\chi_{2312}(411,\cdot)\)
\(\chi_{2312}(419,\cdot)\)
\(\chi_{2312}(435,\cdot)\)
\(\chi_{2312}(483,\cdot)\)
\(\chi_{2312}(499,\cdot)\)
\(\chi_{2312}(507,\cdot)\)
\(\chi_{2312}(515,\cdot)\)
\(\chi_{2312}(539,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1735,1157,1737)\) → \((-1,-1,e\left(\frac{23}{272}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 2312 }(11, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{272}\right)\) | \(e\left(\frac{235}{272}\right)\) | \(e\left(\frac{165}{272}\right)\) | \(e\left(\frac{23}{136}\right)\) | \(e\left(\frac{257}{272}\right)\) | \(e\left(\frac{5}{68}\right)\) | \(e\left(\frac{129}{136}\right)\) | \(e\left(\frac{25}{136}\right)\) | \(e\left(\frac{47}{68}\right)\) | \(e\left(\frac{97}{272}\right)\) |
sage:chi.jacobi_sum(n)