Properties

Label 23104.731
Modulus $23104$
Conductor $23104$
Order $2736$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(23104, base_ring=CyclotomicField(2736)) M = H._module chi = DirichletCharacter(H, M([1368,1539,2224]))
 
Copy content pari:[g,chi] = znchar(Mod(731,23104))
 

Basic properties

Modulus: \(23104\)
Conductor: \(23104\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2736\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 23104.ep

\(\chi_{23104}(35,\cdot)\) \(\chi_{23104}(43,\cdot)\) \(\chi_{23104}(123,\cdot)\) \(\chi_{23104}(131,\cdot)\) \(\chi_{23104}(139,\cdot)\) \(\chi_{23104}(187,\cdot)\) \(\chi_{23104}(195,\cdot)\) \(\chi_{23104}(251,\cdot)\) \(\chi_{23104}(275,\cdot)\) \(\chi_{23104}(283,\cdot)\) \(\chi_{23104}(291,\cdot)\) \(\chi_{23104}(339,\cdot)\) \(\chi_{23104}(347,\cdot)\) \(\chi_{23104}(403,\cdot)\) \(\chi_{23104}(427,\cdot)\) \(\chi_{23104}(435,\cdot)\) \(\chi_{23104}(443,\cdot)\) \(\chi_{23104}(491,\cdot)\) \(\chi_{23104}(499,\cdot)\) \(\chi_{23104}(555,\cdot)\) \(\chi_{23104}(579,\cdot)\) \(\chi_{23104}(587,\cdot)\) \(\chi_{23104}(643,\cdot)\) \(\chi_{23104}(651,\cdot)\) \(\chi_{23104}(707,\cdot)\) \(\chi_{23104}(731,\cdot)\) \(\chi_{23104}(739,\cdot)\) \(\chi_{23104}(747,\cdot)\) \(\chi_{23104}(795,\cdot)\) \(\chi_{23104}(803,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{2736})$
Fixed field: Number field defined by a degree 2736 polynomial (not computed)

Values on generators

\((5055,12997,14081)\) → \((-1,e\left(\frac{9}{16}\right),e\left(\frac{139}{171}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 23104 }(731, a) \) \(-1\)\(1\)\(e\left(\frac{481}{2736}\right)\)\(e\left(\frac{403}{2736}\right)\)\(e\left(\frac{25}{456}\right)\)\(e\left(\frac{481}{1368}\right)\)\(e\left(\frac{205}{912}\right)\)\(e\left(\frac{2381}{2736}\right)\)\(e\left(\frac{221}{684}\right)\)\(e\left(\frac{313}{684}\right)\)\(e\left(\frac{631}{2736}\right)\)\(e\left(\frac{73}{1368}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 23104 }(731,a) \;\) at \(\;a = \) e.g. 2