sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(23104, base_ring=CyclotomicField(2736))
M = H._module
chi = DirichletCharacter(H, M([1368,2223,352]))
pari:[g,chi] = znchar(Mod(1643,23104))
| Modulus: | \(23104\) | |
| Conductor: | \(23104\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2736\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{23104}(35,\cdot)\)
\(\chi_{23104}(43,\cdot)\)
\(\chi_{23104}(123,\cdot)\)
\(\chi_{23104}(131,\cdot)\)
\(\chi_{23104}(139,\cdot)\)
\(\chi_{23104}(187,\cdot)\)
\(\chi_{23104}(195,\cdot)\)
\(\chi_{23104}(251,\cdot)\)
\(\chi_{23104}(275,\cdot)\)
\(\chi_{23104}(283,\cdot)\)
\(\chi_{23104}(291,\cdot)\)
\(\chi_{23104}(339,\cdot)\)
\(\chi_{23104}(347,\cdot)\)
\(\chi_{23104}(403,\cdot)\)
\(\chi_{23104}(427,\cdot)\)
\(\chi_{23104}(435,\cdot)\)
\(\chi_{23104}(443,\cdot)\)
\(\chi_{23104}(491,\cdot)\)
\(\chi_{23104}(499,\cdot)\)
\(\chi_{23104}(555,\cdot)\)
\(\chi_{23104}(579,\cdot)\)
\(\chi_{23104}(587,\cdot)\)
\(\chi_{23104}(643,\cdot)\)
\(\chi_{23104}(651,\cdot)\)
\(\chi_{23104}(707,\cdot)\)
\(\chi_{23104}(731,\cdot)\)
\(\chi_{23104}(739,\cdot)\)
\(\chi_{23104}(747,\cdot)\)
\(\chi_{23104}(795,\cdot)\)
\(\chi_{23104}(803,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5055,12997,14081)\) → \((-1,e\left(\frac{13}{16}\right),e\left(\frac{22}{171}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
| \( \chi_{ 23104 }(1643, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2245}{2736}\right)\) | \(e\left(\frac{1807}{2736}\right)\) | \(e\left(\frac{421}{456}\right)\) | \(e\left(\frac{877}{1368}\right)\) | \(e\left(\frac{625}{912}\right)\) | \(e\left(\frac{1409}{2736}\right)\) | \(e\left(\frac{329}{684}\right)\) | \(e\left(\frac{565}{684}\right)\) | \(e\left(\frac{2035}{2736}\right)\) | \(e\left(\frac{901}{1368}\right)\) |
sage:chi.jacobi_sum(n)