sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(22848, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,11,0,8,2]))
pari:[g,chi] = znchar(Mod(5347,22848))
\(\chi_{22848}(5347,\cdot)\)
\(\chi_{22848}(9715,\cdot)\)
\(\chi_{22848}(10219,\cdot)\)
\(\chi_{22848}(10555,\cdot)\)
\(\chi_{22848}(16771,\cdot)\)
\(\chi_{22848}(21139,\cdot)\)
\(\chi_{22848}(21643,\cdot)\)
\(\chi_{22848}(21979,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((13567,18565,15233,3265,2689)\) → \((-1,e\left(\frac{11}{16}\right),1,-1,e\left(\frac{1}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 22848 }(5347, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)