Properties

Label 22848.21599
Modulus $22848$
Conductor $2856$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(22848, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,12,12,16,3]))
 
Copy content pari:[g,chi] = znchar(Mod(21599,22848))
 

Basic properties

Modulus: \(22848\)
Conductor: \(2856\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2856}(179,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 22848.ug

\(\chi_{22848}(3551,\cdot)\) \(\chi_{22848}(6815,\cdot)\) \(\chi_{22848}(8927,\cdot)\) \(\chi_{22848}(12191,\cdot)\) \(\chi_{22848}(16991,\cdot)\) \(\chi_{22848}(18335,\cdot)\) \(\chi_{22848}(20255,\cdot)\) \(\chi_{22848}(21599,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((13567,18565,15233,3265,2689)\) → \((-1,-1,-1,e\left(\frac{2}{3}\right),e\left(\frac{1}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 22848 }(21599, a) \) \(1\)\(1\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{1}{24}\right)\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{7}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 22848 }(21599,a) \;\) at \(\;a = \) e.g. 2