sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(22848, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,12,12,16,3]))
pari:[g,chi] = znchar(Mod(21599,22848))
\(\chi_{22848}(3551,\cdot)\)
\(\chi_{22848}(6815,\cdot)\)
\(\chi_{22848}(8927,\cdot)\)
\(\chi_{22848}(12191,\cdot)\)
\(\chi_{22848}(16991,\cdot)\)
\(\chi_{22848}(18335,\cdot)\)
\(\chi_{22848}(20255,\cdot)\)
\(\chi_{22848}(21599,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((13567,18565,15233,3265,2689)\) → \((-1,-1,-1,e\left(\frac{2}{3}\right),e\left(\frac{1}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 22848 }(21599, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) |
sage:chi.jacobi_sum(n)