Properties

Label 22848.18001
Modulus $22848$
Conductor $1904$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(22848, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,18,0,16,9]))
 
Copy content pari:[g,chi] = znchar(Mod(18001,22848))
 

Basic properties

Modulus: \(22848\)
Conductor: \(1904\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1904}(1341,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 22848.tv

\(\chi_{22848}(529,\cdot)\) \(\chi_{22848}(14737,\cdot)\) \(\chi_{22848}(16753,\cdot)\) \(\chi_{22848}(18001,\cdot)\) \(\chi_{22848}(18097,\cdot)\) \(\chi_{22848}(20017,\cdot)\) \(\chi_{22848}(20113,\cdot)\) \(\chi_{22848}(21361,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((13567,18565,15233,3265,2689)\) → \((1,-i,1,e\left(\frac{2}{3}\right),e\left(\frac{3}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 22848 }(18001, a) \) \(1\)\(1\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{1}{24}\right)\)\(-i\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{5}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 22848 }(18001,a) \;\) at \(\;a = \) e.g. 2