sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(22848, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([4,6,0,4,1]))
pari:[g,chi] = znchar(Mod(15343,22848))
\(\chi_{22848}(11983,\cdot)\)
\(\chi_{22848}(13999,\cdot)\)
\(\chi_{22848}(15343,\cdot)\)
\(\chi_{22848}(17359,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((13567,18565,15233,3265,2689)\) → \((-1,-i,1,-1,e\left(\frac{1}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 22848 }(15343, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) |
sage:chi.jacobi_sum(n)