Properties

Label 22848.15133
Modulus $22848$
Conductor $7616$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(22848, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,11,0,8,1]))
 
Copy content pari:[g,chi] = znchar(Mod(15133,22848))
 

Basic properties

Modulus: \(22848\)
Conductor: \(7616\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{7616}(7517,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 22848.kb

\(\chi_{22848}(685,\cdot)\) \(\chi_{22848}(4549,\cdot)\) \(\chi_{22848}(11605,\cdot)\) \(\chi_{22848}(11941,\cdot)\) \(\chi_{22848}(15133,\cdot)\) \(\chi_{22848}(16309,\cdot)\) \(\chi_{22848}(18493,\cdot)\) \(\chi_{22848}(21517,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: Number field defined by a degree 16 polynomial

Values on generators

\((13567,18565,15233,3265,2689)\) → \((1,e\left(\frac{11}{16}\right),1,-1,e\left(\frac{1}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 22848 }(15133, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(1\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(i\)\(e\left(\frac{13}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 22848 }(15133,a) \;\) at \(\;a = \) e.g. 2