sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(22848, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,3,6,10,6]))
pari:[g,chi] = znchar(Mod(13361,22848))
\(\chi_{22848}(1937,\cdot)\)
\(\chi_{22848}(10097,\cdot)\)
\(\chi_{22848}(13361,\cdot)\)
\(\chi_{22848}(21521,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((13567,18565,15233,3265,2689)\) → \((1,i,-1,e\left(\frac{5}{6}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 22848 }(13361, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)