sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2268, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,10,3]))
pari:[g,chi] = znchar(Mod(73,2268))
\(\chi_{2268}(73,\cdot)\)
\(\chi_{2268}(145,\cdot)\)
\(\chi_{2268}(829,\cdot)\)
\(\chi_{2268}(901,\cdot)\)
\(\chi_{2268}(1585,\cdot)\)
\(\chi_{2268}(1657,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1135,1541,325)\) → \((1,e\left(\frac{5}{9}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 2268 }(73, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage:chi.jacobi_sum(n)