sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(223, base_ring=CyclotomicField(74))
M = H._module
chi = DirichletCharacter(H, M([18]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(16,223))
         
     
    
  
   | Modulus: |  \(223\) |   |  
   | Conductor: |  \(223\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(37\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{223}(2,\cdot)\)
  \(\chi_{223}(4,\cdot)\)
  \(\chi_{223}(7,\cdot)\)
  \(\chi_{223}(8,\cdot)\)
  \(\chi_{223}(14,\cdot)\)
  \(\chi_{223}(15,\cdot)\)
  \(\chi_{223}(16,\cdot)\)
  \(\chi_{223}(17,\cdot)\)
  \(\chi_{223}(28,\cdot)\)
  \(\chi_{223}(30,\cdot)\)
  \(\chi_{223}(32,\cdot)\)
  \(\chi_{223}(33,\cdot)\)
  \(\chi_{223}(34,\cdot)\)
  \(\chi_{223}(41,\cdot)\)
  \(\chi_{223}(49,\cdot)\)
  \(\chi_{223}(56,\cdot)\)
  \(\chi_{223}(60,\cdot)\)
  \(\chi_{223}(64,\cdot)\)
  \(\chi_{223}(66,\cdot)\)
  \(\chi_{223}(68,\cdot)\)
  \(\chi_{223}(82,\cdot)\)
  \(\chi_{223}(98,\cdot)\)
  \(\chi_{223}(105,\cdot)\)
  \(\chi_{223}(112,\cdot)\)
  \(\chi_{223}(115,\cdot)\)
  \(\chi_{223}(119,\cdot)\)
  \(\chi_{223}(120,\cdot)\)
  \(\chi_{223}(128,\cdot)\)
  \(\chi_{223}(132,\cdot)\)
  \(\chi_{223}(136,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\(3\) → \(e\left(\frac{9}{37}\right)\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |       
    
    
      | \( \chi_{ 223 }(16, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{29}{37}\right)\) | \(e\left(\frac{9}{37}\right)\) | \(e\left(\frac{21}{37}\right)\) | \(e\left(\frac{24}{37}\right)\) | \(e\left(\frac{1}{37}\right)\) | \(e\left(\frac{3}{37}\right)\) | \(e\left(\frac{13}{37}\right)\) | \(e\left(\frac{18}{37}\right)\) | \(e\left(\frac{16}{37}\right)\) | \(e\left(\frac{1}{37}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)