sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2205, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([8,3,2]))
pari:[g,chi] = znchar(Mod(1942,2205))
\(\chi_{2205}(178,\cdot)\)
\(\chi_{2205}(607,\cdot)\)
\(\chi_{2205}(1048,\cdot)\)
\(\chi_{2205}(1942,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,442,1081)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 2205 }(1942, a) \) |
\(1\) | \(1\) | \(i\) | \(-1\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) |
sage:chi.jacobi_sum(n)