sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2205, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([28,63,22]))
pari:[g,chi] = znchar(Mod(1678,2205))
Modulus: | \(2205\) | |
Conductor: | \(2205\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2205}(52,\cdot)\)
\(\chi_{2205}(103,\cdot)\)
\(\chi_{2205}(292,\cdot)\)
\(\chi_{2205}(367,\cdot)\)
\(\chi_{2205}(418,\cdot)\)
\(\chi_{2205}(493,\cdot)\)
\(\chi_{2205}(682,\cdot)\)
\(\chi_{2205}(733,\cdot)\)
\(\chi_{2205}(808,\cdot)\)
\(\chi_{2205}(922,\cdot)\)
\(\chi_{2205}(997,\cdot)\)
\(\chi_{2205}(1123,\cdot)\)
\(\chi_{2205}(1237,\cdot)\)
\(\chi_{2205}(1312,\cdot)\)
\(\chi_{2205}(1363,\cdot)\)
\(\chi_{2205}(1438,\cdot)\)
\(\chi_{2205}(1552,\cdot)\)
\(\chi_{2205}(1627,\cdot)\)
\(\chi_{2205}(1678,\cdot)\)
\(\chi_{2205}(1753,\cdot)\)
\(\chi_{2205}(1867,\cdot)\)
\(\chi_{2205}(1993,\cdot)\)
\(\chi_{2205}(2068,\cdot)\)
\(\chi_{2205}(2182,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,442,1081)\) → \((e\left(\frac{1}{3}\right),-i,e\left(\frac{11}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 2205 }(1678, a) \) |
\(1\) | \(1\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{73}{84}\right)\) |
sage:chi.jacobi_sum(n)