sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2183, base_ring=CyclotomicField(348))
M = H._module
chi = DirichletCharacter(H, M([203,282]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(288,2183))
         
     
    
  
   | Modulus: |  \(2183\) |   |  
   | Conductor: |  \(2183\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(348\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{2183}(8,\cdot)\)
  \(\chi_{2183}(14,\cdot)\)
  \(\chi_{2183}(23,\cdot)\)
  \(\chi_{2183}(82,\cdot)\)
  \(\chi_{2183}(97,\cdot)\)
  \(\chi_{2183}(103,\cdot)\)
  \(\chi_{2183}(156,\cdot)\)
  \(\chi_{2183}(162,\cdot)\)
  \(\chi_{2183}(208,\cdot)\)
  \(\chi_{2183}(214,\cdot)\)
  \(\chi_{2183}(267,\cdot)\)
  \(\chi_{2183}(273,\cdot)\)
  \(\chi_{2183}(288,\cdot)\)
  \(\chi_{2183}(319,\cdot)\)
  \(\chi_{2183}(325,\cdot)\)
  \(\chi_{2183}(347,\cdot)\)
  \(\chi_{2183}(356,\cdot)\)
  \(\chi_{2183}(362,\cdot)\)
  \(\chi_{2183}(378,\cdot)\)
  \(\chi_{2183}(384,\cdot)\)
  \(\chi_{2183}(393,\cdot)\)
  \(\chi_{2183}(415,\cdot)\)
  \(\chi_{2183}(421,\cdot)\)
  \(\chi_{2183}(436,\cdot)\)
  \(\chi_{2183}(452,\cdot)\)
  \(\chi_{2183}(467,\cdot)\)
  \(\chi_{2183}(495,\cdot)\)
  \(\chi_{2183}(504,\cdot)\)
  \(\chi_{2183}(510,\cdot)\)
  \(\chi_{2183}(526,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1889,297)\) → \((e\left(\frac{7}{12}\right),e\left(\frac{47}{58}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |       
    
    
      | \( \chi_{ 2183 }(288, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{137}{348}\right)\) | \(e\left(\frac{119}{174}\right)\) | \(e\left(\frac{137}{174}\right)\) | \(e\left(\frac{97}{348}\right)\) | \(e\left(\frac{9}{116}\right)\) | \(e\left(\frac{22}{87}\right)\) | \(e\left(\frac{21}{116}\right)\) | \(e\left(\frac{32}{87}\right)\) | \(e\left(\frac{39}{58}\right)\) | \(e\left(\frac{22}{29}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)