sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2183, base_ring=CyclotomicField(522))
M = H._module
chi = DirichletCharacter(H, M([290,18]))
pari:[g,chi] = znchar(Mod(181,2183))
| Modulus: | \(2183\) | |
| Conductor: | \(2183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(261\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2183}(7,\cdot)\)
\(\chi_{2183}(9,\cdot)\)
\(\chi_{2183}(12,\cdot)\)
\(\chi_{2183}(16,\cdot)\)
\(\chi_{2183}(46,\cdot)\)
\(\chi_{2183}(49,\cdot)\)
\(\chi_{2183}(53,\cdot)\)
\(\chi_{2183}(71,\cdot)\)
\(\chi_{2183}(81,\cdot)\)
\(\chi_{2183}(86,\cdot)\)
\(\chi_{2183}(107,\cdot)\)
\(\chi_{2183}(108,\cdot)\)
\(\chi_{2183}(123,\cdot)\)
\(\chi_{2183}(127,\cdot)\)
\(\chi_{2183}(144,\cdot)\)
\(\chi_{2183}(145,\cdot)\)
\(\chi_{2183}(164,\cdot)\)
\(\chi_{2183}(181,\cdot)\)
\(\chi_{2183}(182,\cdot)\)
\(\chi_{2183}(192,\cdot)\)
\(\chi_{2183}(194,\cdot)\)
\(\chi_{2183}(197,\cdot)\)
\(\chi_{2183}(218,\cdot)\)
\(\chi_{2183}(234,\cdot)\)
\(\chi_{2183}(255,\cdot)\)
\(\chi_{2183}(256,\cdot)\)
\(\chi_{2183}(271,\cdot)\)
\(\chi_{2183}(293,\cdot)\)
\(\chi_{2183}(312,\cdot)\)
\(\chi_{2183}(330,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1889,297)\) → \((e\left(\frac{5}{9}\right),e\left(\frac{1}{29}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 2183 }(181, a) \) |
\(1\) | \(1\) | \(e\left(\frac{154}{261}\right)\) | \(e\left(\frac{44}{261}\right)\) | \(e\left(\frac{47}{261}\right)\) | \(e\left(\frac{257}{261}\right)\) | \(e\left(\frac{22}{29}\right)\) | \(e\left(\frac{104}{261}\right)\) | \(e\left(\frac{67}{87}\right)\) | \(e\left(\frac{88}{261}\right)\) | \(e\left(\frac{50}{87}\right)\) | \(e\left(\frac{46}{87}\right)\) |
sage:chi.jacobi_sum(n)