![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2183, base_ring=CyclotomicField(174))
M = H._module
chi = DirichletCharacter(H, M([116,30]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2183, base_ring=CyclotomicField(174))
M = H._module
chi = DirichletCharacter(H, M([116,30]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(1083,2183))
        pari:[g,chi] = znchar(Mod(1083,2183))
         
     
    
  
   | Modulus: | \(2183\) |  | 
   | Conductor: | \(2183\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(87\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{2183}(26,\cdot)\)
  \(\chi_{2183}(63,\cdot)\)
  \(\chi_{2183}(84,\cdot)\)
  \(\chi_{2183}(100,\cdot)\)
  \(\chi_{2183}(121,\cdot)\)
  \(\chi_{2183}(137,\cdot)\)
  \(\chi_{2183}(248,\cdot)\)
  \(\chi_{2183}(285,\cdot)\)
  \(\chi_{2183}(322,\cdot)\)
  \(\chi_{2183}(343,\cdot)\)
  \(\chi_{2183}(359,\cdot)\)
  \(\chi_{2183}(380,\cdot)\)
  \(\chi_{2183}(417,\cdot)\)
  \(\chi_{2183}(433,\cdot)\)
  \(\chi_{2183}(454,\cdot)\)
  \(\chi_{2183}(470,\cdot)\)
  \(\chi_{2183}(491,\cdot)\)
  \(\chi_{2183}(507,\cdot)\)
  \(\chi_{2183}(602,\cdot)\)
  \(\chi_{2183}(618,\cdot)\)
  \(\chi_{2183}(639,\cdot)\)
  \(\chi_{2183}(676,\cdot)\)
  \(\chi_{2183}(713,\cdot)\)
  \(\chi_{2183}(729,\cdot)\)
  \(\chi_{2183}(787,\cdot)\)
  \(\chi_{2183}(803,\cdot)\)
  \(\chi_{2183}(824,\cdot)\)
  \(\chi_{2183}(861,\cdot)\)
  \(\chi_{2183}(877,\cdot)\)
  \(\chi_{2183}(914,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1889,297)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{5}{29}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) | 
    
    
      | \( \chi_{ 2183 }(1083, a) \) | \(1\) | \(1\) | \(e\left(\frac{73}{87}\right)\) | \(e\left(\frac{83}{87}\right)\) | \(e\left(\frac{59}{87}\right)\) | \(e\left(\frac{32}{87}\right)\) | \(e\left(\frac{23}{29}\right)\) | \(e\left(\frac{38}{87}\right)\) | \(e\left(\frac{15}{29}\right)\) | \(e\left(\frac{79}{87}\right)\) | \(e\left(\frac{6}{29}\right)\) | \(e\left(\frac{9}{29}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)