sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2183, base_ring=CyclotomicField(348))
M = H._module
chi = DirichletCharacter(H, M([319,138]))
pari:[g,chi] = znchar(Mod(1050,2183))
| Modulus: | \(2183\) | |
| Conductor: | \(2183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(348\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2183}(8,\cdot)\)
\(\chi_{2183}(14,\cdot)\)
\(\chi_{2183}(23,\cdot)\)
\(\chi_{2183}(82,\cdot)\)
\(\chi_{2183}(97,\cdot)\)
\(\chi_{2183}(103,\cdot)\)
\(\chi_{2183}(156,\cdot)\)
\(\chi_{2183}(162,\cdot)\)
\(\chi_{2183}(208,\cdot)\)
\(\chi_{2183}(214,\cdot)\)
\(\chi_{2183}(267,\cdot)\)
\(\chi_{2183}(273,\cdot)\)
\(\chi_{2183}(288,\cdot)\)
\(\chi_{2183}(319,\cdot)\)
\(\chi_{2183}(325,\cdot)\)
\(\chi_{2183}(347,\cdot)\)
\(\chi_{2183}(356,\cdot)\)
\(\chi_{2183}(362,\cdot)\)
\(\chi_{2183}(378,\cdot)\)
\(\chi_{2183}(384,\cdot)\)
\(\chi_{2183}(393,\cdot)\)
\(\chi_{2183}(415,\cdot)\)
\(\chi_{2183}(421,\cdot)\)
\(\chi_{2183}(436,\cdot)\)
\(\chi_{2183}(452,\cdot)\)
\(\chi_{2183}(467,\cdot)\)
\(\chi_{2183}(495,\cdot)\)
\(\chi_{2183}(504,\cdot)\)
\(\chi_{2183}(510,\cdot)\)
\(\chi_{2183}(526,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1889,297)\) → \((e\left(\frac{11}{12}\right),e\left(\frac{23}{58}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 2183 }(1050, a) \) |
\(1\) | \(1\) | \(e\left(\frac{109}{348}\right)\) | \(e\left(\frac{115}{174}\right)\) | \(e\left(\frac{109}{174}\right)\) | \(e\left(\frac{161}{348}\right)\) | \(e\left(\frac{113}{116}\right)\) | \(e\left(\frac{41}{87}\right)\) | \(e\left(\frac{109}{116}\right)\) | \(e\left(\frac{28}{87}\right)\) | \(e\left(\frac{45}{58}\right)\) | \(e\left(\frac{12}{29}\right)\) |
sage:chi.jacobi_sum(n)