sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2183, base_ring=CyclotomicField(522))
M = H._module
chi = DirichletCharacter(H, M([203,432]))
pari:[g,chi] = znchar(Mod(104,2183))
Modulus: | \(2183\) | |
Conductor: | \(2183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(522\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2183}(3,\cdot)\)
\(\chi_{2183}(4,\cdot)\)
\(\chi_{2183}(21,\cdot)\)
\(\chi_{2183}(25,\cdot)\)
\(\chi_{2183}(28,\cdot)\)
\(\chi_{2183}(41,\cdot)\)
\(\chi_{2183}(62,\cdot)\)
\(\chi_{2183}(78,\cdot)\)
\(\chi_{2183}(95,\cdot)\)
\(\chi_{2183}(104,\cdot)\)
\(\chi_{2183}(139,\cdot)\)
\(\chi_{2183}(169,\cdot)\)
\(\chi_{2183}(189,\cdot)\)
\(\chi_{2183}(206,\cdot)\)
\(\chi_{2183}(213,\cdot)\)
\(\chi_{2183}(225,\cdot)\)
\(\chi_{2183}(226,\cdot)\)
\(\chi_{2183}(243,\cdot)\)
\(\chi_{2183}(252,\cdot)\)
\(\chi_{2183}(262,\cdot)\)
\(\chi_{2183}(263,\cdot)\)
\(\chi_{2183}(284,\cdot)\)
\(\chi_{2183}(287,\cdot)\)
\(\chi_{2183}(289,\cdot)\)
\(\chi_{2183}(299,\cdot)\)
\(\chi_{2183}(300,\cdot)\)
\(\chi_{2183}(317,\cdot)\)
\(\chi_{2183}(321,\cdot)\)
\(\chi_{2183}(324,\cdot)\)
\(\chi_{2183}(336,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1889,297)\) → \((e\left(\frac{7}{18}\right),e\left(\frac{24}{29}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 2183 }(104, a) \) |
\(1\) | \(1\) | \(e\left(\frac{113}{522}\right)\) | \(e\left(\frac{128}{261}\right)\) | \(e\left(\frac{113}{261}\right)\) | \(e\left(\frac{475}{522}\right)\) | \(e\left(\frac{41}{58}\right)\) | \(e\left(\frac{89}{261}\right)\) | \(e\left(\frac{113}{174}\right)\) | \(e\left(\frac{256}{261}\right)\) | \(e\left(\frac{11}{87}\right)\) | \(e\left(\frac{31}{87}\right)\) |
sage:chi.jacobi_sum(n)