sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2183, base_ring=CyclotomicField(116))
M = H._module
chi = DirichletCharacter(H, M([87,2]))
pari:[g,chi] = znchar(Mod(1005,2183))
Modulus: | \(2183\) | |
Conductor: | \(2183\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(116\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2183}(6,\cdot)\)
\(\chi_{2183}(31,\cdot)\)
\(\chi_{2183}(43,\cdot)\)
\(\chi_{2183}(142,\cdot)\)
\(\chi_{2183}(179,\cdot)\)
\(\chi_{2183}(191,\cdot)\)
\(\chi_{2183}(216,\cdot)\)
\(\chi_{2183}(290,\cdot)\)
\(\chi_{2183}(327,\cdot)\)
\(\chi_{2183}(339,\cdot)\)
\(\chi_{2183}(364,\cdot)\)
\(\chi_{2183}(401,\cdot)\)
\(\chi_{2183}(450,\cdot)\)
\(\chi_{2183}(512,\cdot)\)
\(\chi_{2183}(524,\cdot)\)
\(\chi_{2183}(549,\cdot)\)
\(\chi_{2183}(561,\cdot)\)
\(\chi_{2183}(586,\cdot)\)
\(\chi_{2183}(598,\cdot)\)
\(\chi_{2183}(623,\cdot)\)
\(\chi_{2183}(660,\cdot)\)
\(\chi_{2183}(672,\cdot)\)
\(\chi_{2183}(746,\cdot)\)
\(\chi_{2183}(857,\cdot)\)
\(\chi_{2183}(882,\cdot)\)
\(\chi_{2183}(919,\cdot)\)
\(\chi_{2183}(968,\cdot)\)
\(\chi_{2183}(1005,\cdot)\)
\(\chi_{2183}(1042,\cdot)\)
\(\chi_{2183}(1104,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1889,297)\) → \((-i,e\left(\frac{1}{58}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 2183 }(1005, a) \) |
\(1\) | \(1\) | \(e\left(\frac{89}{116}\right)\) | \(e\left(\frac{21}{58}\right)\) | \(e\left(\frac{31}{58}\right)\) | \(e\left(\frac{41}{116}\right)\) | \(e\left(\frac{15}{116}\right)\) | \(e\left(\frac{9}{29}\right)\) | \(e\left(\frac{35}{116}\right)\) | \(e\left(\frac{21}{29}\right)\) | \(e\left(\frac{7}{58}\right)\) | \(e\left(\frac{27}{29}\right)\) |
sage:chi.jacobi_sum(n)