Properties

Label 2183.108
Modulus $2183$
Conductor $2183$
Order $261$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2183, base_ring=CyclotomicField(522)) M = H._module chi = DirichletCharacter(H, M([116,324]))
 
Copy content pari:[g,chi] = znchar(Mod(108,2183))
 

Basic properties

Modulus: \(2183\)
Conductor: \(2183\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(261\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2183.bc

\(\chi_{2183}(7,\cdot)\) \(\chi_{2183}(9,\cdot)\) \(\chi_{2183}(12,\cdot)\) \(\chi_{2183}(16,\cdot)\) \(\chi_{2183}(46,\cdot)\) \(\chi_{2183}(49,\cdot)\) \(\chi_{2183}(53,\cdot)\) \(\chi_{2183}(71,\cdot)\) \(\chi_{2183}(81,\cdot)\) \(\chi_{2183}(86,\cdot)\) \(\chi_{2183}(107,\cdot)\) \(\chi_{2183}(108,\cdot)\) \(\chi_{2183}(123,\cdot)\) \(\chi_{2183}(127,\cdot)\) \(\chi_{2183}(144,\cdot)\) \(\chi_{2183}(145,\cdot)\) \(\chi_{2183}(164,\cdot)\) \(\chi_{2183}(181,\cdot)\) \(\chi_{2183}(182,\cdot)\) \(\chi_{2183}(192,\cdot)\) \(\chi_{2183}(194,\cdot)\) \(\chi_{2183}(197,\cdot)\) \(\chi_{2183}(218,\cdot)\) \(\chi_{2183}(234,\cdot)\) \(\chi_{2183}(255,\cdot)\) \(\chi_{2183}(256,\cdot)\) \(\chi_{2183}(271,\cdot)\) \(\chi_{2183}(293,\cdot)\) \(\chi_{2183}(312,\cdot)\) \(\chi_{2183}(330,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{261})$
Fixed field: Number field defined by a degree 261 polynomial (not computed)

Values on generators

\((1889,297)\) → \((e\left(\frac{2}{9}\right),e\left(\frac{18}{29}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 2183 }(108, a) \) \(1\)\(1\)\(e\left(\frac{220}{261}\right)\)\(e\left(\frac{212}{261}\right)\)\(e\left(\frac{179}{261}\right)\)\(e\left(\frac{218}{261}\right)\)\(e\left(\frac{19}{29}\right)\)\(e\left(\frac{74}{261}\right)\)\(e\left(\frac{46}{87}\right)\)\(e\left(\frac{163}{261}\right)\)\(e\left(\frac{59}{87}\right)\)\(e\left(\frac{16}{87}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2183 }(108,a) \;\) at \(\;a = \) e.g. 2