Properties

Label 2128.1019
Modulus $2128$
Conductor $2128$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2128, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,3,8,10]))
 
Copy content pari:[g,chi] = znchar(Mod(1019,2128))
 

Basic properties

Modulus: \(2128\)
Conductor: \(2128\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2128.dq

\(\chi_{2128}(331,\cdot)\) \(\chi_{2128}(1019,\cdot)\) \(\chi_{2128}(1395,\cdot)\) \(\chi_{2128}(2083,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((799,533,913,1009)\) → \((-1,i,e\left(\frac{2}{3}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 2128 }(1019, a) \) \(1\)\(1\)\(-i\)\(e\left(\frac{11}{12}\right)\)\(-1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2128 }(1019,a) \;\) at \(\;a = \) e.g. 2