sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2100, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,0,33,10]))
pari:[g,chi] = znchar(Mod(73,2100))
\(\chi_{2100}(73,\cdot)\)
\(\chi_{2100}(313,\cdot)\)
\(\chi_{2100}(397,\cdot)\)
\(\chi_{2100}(577,\cdot)\)
\(\chi_{2100}(733,\cdot)\)
\(\chi_{2100}(817,\cdot)\)
\(\chi_{2100}(913,\cdot)\)
\(\chi_{2100}(997,\cdot)\)
\(\chi_{2100}(1153,\cdot)\)
\(\chi_{2100}(1237,\cdot)\)
\(\chi_{2100}(1333,\cdot)\)
\(\chi_{2100}(1417,\cdot)\)
\(\chi_{2100}(1573,\cdot)\)
\(\chi_{2100}(1753,\cdot)\)
\(\chi_{2100}(1837,\cdot)\)
\(\chi_{2100}(2077,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1051,701,1177,1501)\) → \((1,1,e\left(\frac{11}{20}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 2100 }(73, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(i\) |
sage:chi.jacobi_sum(n)