Properties

Label 2100.1859
Modulus $2100$
Conductor $2100$
Order $30$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,15,21,20]))
 
Copy content pari:[g,chi] = znchar(Mod(1859,2100))
 

Basic properties

Modulus: \(2100\)
Conductor: \(2100\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2100.di

\(\chi_{2100}(179,\cdot)\) \(\chi_{2100}(359,\cdot)\) \(\chi_{2100}(779,\cdot)\) \(\chi_{2100}(1019,\cdot)\) \(\chi_{2100}(1439,\cdot)\) \(\chi_{2100}(1619,\cdot)\) \(\chi_{2100}(1859,\cdot)\) \(\chi_{2100}(2039,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((1051,701,1177,1501)\) → \((-1,-1,e\left(\frac{7}{10}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2100 }(1859, a) \) \(1\)\(1\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{3}{10}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2100 }(1859,a) \;\) at \(\;a = \) e.g. 2