sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2100, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,15,24,20]))
pari:[g,chi] = znchar(Mod(11,2100))
Modulus: | \(2100\) | |
Conductor: | \(2100\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2100}(11,\cdot)\)
\(\chi_{2100}(191,\cdot)\)
\(\chi_{2100}(431,\cdot)\)
\(\chi_{2100}(611,\cdot)\)
\(\chi_{2100}(1031,\cdot)\)
\(\chi_{2100}(1271,\cdot)\)
\(\chi_{2100}(1691,\cdot)\)
\(\chi_{2100}(1871,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1051,701,1177,1501)\) → \((-1,-1,e\left(\frac{4}{5}\right),e\left(\frac{2}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 2100 }(11, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)