Properties

Label 210.j
Modulus $210$
Conductor $15$
Order $4$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(210, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([2,3,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(113,210)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(210\)
Conductor: \(15\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 15.e
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: \(\Q(\zeta_{15})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{210}(113,\cdot)\) \(1\) \(1\) \(-1\) \(i\) \(i\) \(-1\) \(-i\) \(1\) \(1\) \(-i\) \(-1\) \(i\)
\(\chi_{210}(197,\cdot)\) \(1\) \(1\) \(-1\) \(-i\) \(-i\) \(-1\) \(i\) \(1\) \(1\) \(i\) \(-1\) \(-i\)