Properties

Label 208.115
Modulus $208$
Conductor $208$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,9,7]))
 
Copy content pari:[g,chi] = znchar(Mod(115,208))
 

Basic properties

Modulus: \(208\)
Conductor: \(208\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 208.bk

\(\chi_{208}(115,\cdot)\) \(\chi_{208}(123,\cdot)\) \(\chi_{208}(163,\cdot)\) \(\chi_{208}(171,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.15394540563150776827904.1

Values on generators

\((79,53,145)\) → \((-1,-i,e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 208 }(115, a) \) \(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 208 }(115,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 208 }(115,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 208 }(115,·),\chi_{ 208 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 208 }(115,·)) \;\) at \(\; a,b = \) e.g. 1,2