sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(208, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,9,7]))
pari:[g,chi] = znchar(Mod(115,208))
Modulus: | \(208\) | |
Conductor: | \(208\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(12\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{208}(115,\cdot)\)
\(\chi_{208}(123,\cdot)\)
\(\chi_{208}(163,\cdot)\)
\(\chi_{208}(171,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((79,53,145)\) → \((-1,-i,e\left(\frac{7}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 208 }(115, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)