sage: H = DirichletGroup(208)
pari: g = idealstar(,208,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 96 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{4}\times C_{12}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{208}(79,\cdot)$, $\chi_{208}(53,\cdot)$, $\chi_{208}(145,\cdot)$ |
First 32 of 96 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{208}(1,\cdot)\) | 208.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{208}(3,\cdot)\) | 208.bg | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{208}(5,\cdot)\) | 208.r | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(-i\) | \(-1\) | \(-1\) | \(-1\) | \(1\) |
\(\chi_{208}(7,\cdot)\) | 208.bc | 12 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{208}(9,\cdot)\) | 208.z | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{208}(11,\cdot)\) | 208.bf | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{208}(15,\cdot)\) | 208.bm | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{208}(17,\cdot)\) | 208.w | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{208}(19,\cdot)\) | 208.bf | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{208}(21,\cdot)\) | 208.m | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(i\) | \(-1\) | \(1\) | \(i\) | \(-1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{208}(23,\cdot)\) | 208.x | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{208}(25,\cdot)\) | 208.e | 2 | no | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{208}(27,\cdot)\) | 208.q | 4 | no | \(-1\) | \(1\) | \(i\) | \(i\) | \(1\) | \(-1\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(i\) | \(1\) |
\(\chi_{208}(29,\cdot)\) | 208.bj | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{208}(31,\cdot)\) | 208.k | 4 | no | \(1\) | \(1\) | \(-1\) | \(-i\) | \(-i\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(i\) | \(i\) | \(1\) |
\(\chi_{208}(33,\cdot)\) | 208.bd | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{208}(35,\cdot)\) | 208.bg | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{208}(37,\cdot)\) | 208.be | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{208}(41,\cdot)\) | 208.bn | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{208}(43,\cdot)\) | 208.bi | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{208}(45,\cdot)\) | 208.be | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{208}(47,\cdot)\) | 208.k | 4 | no | \(1\) | \(1\) | \(-1\) | \(i\) | \(i\) | \(1\) | \(i\) | \(-i\) | \(-1\) | \(-i\) | \(-i\) | \(1\) |
\(\chi_{208}(49,\cdot)\) | 208.w | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{208}(51,\cdot)\) | 208.o | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-1\) | \(-i\) | \(1\) | \(1\) | \(i\) | \(i\) | \(1\) |
\(\chi_{208}(53,\cdot)\) | 208.n | 4 | no | \(1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(1\) | \(1\) | \(-i\) | \(i\) | \(-1\) |
\(\chi_{208}(55,\cdot)\) | 208.v | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{208}(57,\cdot)\) | 208.j | 4 | no | \(-1\) | \(1\) | \(-1\) | \(i\) | \(i\) | \(1\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(-i\) | \(-1\) |
\(\chi_{208}(59,\cdot)\) | 208.bf | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{208}(61,\cdot)\) | 208.bj | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{208}(63,\cdot)\) | 208.bm | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{208}(67,\cdot)\) | 208.bf | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{208}(69,\cdot)\) | 208.bh | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) |