Properties

Modulus $208$
Structure \(C_{2}\times C_{4}\times C_{12}\)
Order $96$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(208)
 
pari: g = idealstar(,208,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 96
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{4}\times C_{12}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{208}(79,\cdot)$, $\chi_{208}(53,\cdot)$, $\chi_{208}(145,\cdot)$

First 32 of 96 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(15\) \(17\) \(19\) \(21\) \(23\)
\(\chi_{208}(1,\cdot)\) 208.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{208}(3,\cdot)\) 208.bg 12 yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{208}(5,\cdot)\) 208.r 4 yes \(-1\) \(1\) \(-i\) \(1\) \(-i\) \(-1\) \(-1\) \(-i\) \(-1\) \(-1\) \(-1\) \(1\)
\(\chi_{208}(7,\cdot)\) 208.bc 12 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{208}(9,\cdot)\) 208.z 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{208}(11,\cdot)\) 208.bf 12 yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{208}(15,\cdot)\) 208.bm 12 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{208}(17,\cdot)\) 208.w 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{208}(19,\cdot)\) 208.bf 12 yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{208}(21,\cdot)\) 208.m 4 yes \(-1\) \(1\) \(-i\) \(-1\) \(i\) \(-1\) \(1\) \(i\) \(-1\) \(1\) \(1\) \(1\)
\(\chi_{208}(23,\cdot)\) 208.x 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{208}(25,\cdot)\) 208.e 2 no \(1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{208}(27,\cdot)\) 208.q 4 no \(-1\) \(1\) \(i\) \(i\) \(1\) \(-1\) \(-i\) \(-1\) \(1\) \(i\) \(i\) \(1\)
\(\chi_{208}(29,\cdot)\) 208.bj 12 yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{208}(31,\cdot)\) 208.k 4 no \(1\) \(1\) \(-1\) \(-i\) \(-i\) \(1\) \(-i\) \(i\) \(-1\) \(i\) \(i\) \(1\)
\(\chi_{208}(33,\cdot)\) 208.bd 12 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{208}(35,\cdot)\) 208.bg 12 yes \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{208}(37,\cdot)\) 208.be 12 yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{208}(41,\cdot)\) 208.bn 12 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{208}(43,\cdot)\) 208.bi 12 yes \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{208}(45,\cdot)\) 208.be 12 yes \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{208}(47,\cdot)\) 208.k 4 no \(1\) \(1\) \(-1\) \(i\) \(i\) \(1\) \(i\) \(-i\) \(-1\) \(-i\) \(-i\) \(1\)
\(\chi_{208}(49,\cdot)\) 208.w 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{208}(51,\cdot)\) 208.o 4 yes \(-1\) \(1\) \(-i\) \(i\) \(-1\) \(-1\) \(-i\) \(1\) \(1\) \(i\) \(i\) \(1\)
\(\chi_{208}(53,\cdot)\) 208.n 4 no \(1\) \(1\) \(-i\) \(i\) \(-1\) \(-1\) \(i\) \(1\) \(1\) \(-i\) \(i\) \(-1\)
\(\chi_{208}(55,\cdot)\) 208.v 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{208}(57,\cdot)\) 208.j 4 no \(-1\) \(1\) \(-1\) \(i\) \(i\) \(1\) \(-i\) \(-i\) \(-1\) \(i\) \(-i\) \(-1\)
\(\chi_{208}(59,\cdot)\) 208.bf 12 yes \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{208}(61,\cdot)\) 208.bj 12 yes \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{208}(63,\cdot)\) 208.bm 12 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{208}(67,\cdot)\) 208.bf 12 yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{208}(69,\cdot)\) 208.bh 12 yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\)
Click here to search among the remaining 64 characters.