Properties

Label 2057.bg
Modulus $2057$
Conductor $2057$
Order $176$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(176)) M = H._module chi = DirichletCharacter(H, M([144,143])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(12,2057)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2057\)
Conductor: \(2057\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(176\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{176})$
Fixed field: Number field defined by a degree 176 polynomial (not computed)

First 31 of 80 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{2057}(12,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{107}{176}\right)\) \(e\left(\frac{1}{176}\right)\) \(e\left(\frac{117}{176}\right)\) \(e\left(\frac{51}{88}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{141}{176}\right)\) \(e\left(\frac{35}{176}\right)\)
\(\chi_{2057}(23,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{137}{176}\right)\) \(e\left(\frac{123}{176}\right)\) \(e\left(\frac{135}{176}\right)\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{95}{176}\right)\) \(e\left(\frac{81}{176}\right)\)
\(\chi_{2057}(45,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{88}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{65}{176}\right)\) \(e\left(\frac{147}{176}\right)\) \(e\left(\frac{127}{176}\right)\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{135}{176}\right)\) \(e\left(\frac{41}{176}\right)\)
\(\chi_{2057}(56,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{88}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{51}{176}\right)\) \(e\left(\frac{137}{176}\right)\) \(e\left(\frac{13}{176}\right)\) \(e\left(\frac{35}{88}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{133}{176}\right)\) \(e\left(\frac{43}{176}\right)\)
\(\chi_{2057}(78,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{88}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{133}{176}\right)\) \(e\left(\frac{95}{176}\right)\) \(e\left(\frac{27}{176}\right)\) \(e\left(\frac{5}{88}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{19}{176}\right)\) \(e\left(\frac{157}{176}\right)\)
\(\chi_{2057}(133,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{88}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{63}{176}\right)\) \(e\left(\frac{45}{176}\right)\) \(e\left(\frac{161}{176}\right)\) \(e\left(\frac{7}{88}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{9}{176}\right)\) \(e\left(\frac{167}{176}\right)\)
\(\chi_{2057}(177,\cdot)\) \(-1\) \(1\) \(e\left(\frac{63}{88}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{29}{176}\right)\) \(e\left(\frac{71}{176}\right)\) \(e\left(\frac{35}{176}\right)\) \(e\left(\frac{13}{88}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{155}{176}\right)\) \(e\left(\frac{21}{176}\right)\)
\(\chi_{2057}(199,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{155}{176}\right)\) \(e\left(\frac{161}{176}\right)\) \(e\left(\frac{5}{176}\right)\) \(e\left(\frac{27}{88}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{173}{176}\right)\) \(e\left(\frac{3}{176}\right)\)
\(\chi_{2057}(210,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{88}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{9}{176}\right)\) \(e\left(\frac{107}{176}\right)\) \(e\left(\frac{23}{176}\right)\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{127}{176}\right)\) \(e\left(\frac{49}{176}\right)\)
\(\chi_{2057}(232,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{88}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{113}{176}\right)\) \(e\left(\frac{131}{176}\right)\) \(e\left(\frac{15}{176}\right)\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{167}{176}\right)\) \(e\left(\frac{9}{176}\right)\)
\(\chi_{2057}(265,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{88}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{5}{176}\right)\) \(e\left(\frac{79}{176}\right)\) \(e\left(\frac{91}{176}\right)\) \(e\left(\frac{69}{88}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{51}{176}\right)\) \(e\left(\frac{125}{176}\right)\)
\(\chi_{2057}(309,\cdot)\) \(-1\) \(1\) \(e\left(\frac{69}{88}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{103}{176}\right)\) \(e\left(\frac{149}{176}\right)\) \(e\left(\frac{9}{176}\right)\) \(e\left(\frac{31}{88}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{65}{176}\right)\) \(e\left(\frac{111}{176}\right)\)
\(\chi_{2057}(320,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{88}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{111}{176}\right)\) \(e\left(\frac{29}{176}\right)\) \(e\left(\frac{49}{176}\right)\) \(e\left(\frac{71}{88}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{41}{176}\right)\) \(e\left(\frac{135}{176}\right)\)
\(\chi_{2057}(386,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{27}{176}\right)\) \(e\left(\frac{145}{176}\right)\) \(e\left(\frac{69}{176}\right)\) \(e\left(\frac{3}{88}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{29}{176}\right)\) \(e\left(\frac{147}{176}\right)\)
\(\chi_{2057}(397,\cdot)\) \(-1\) \(1\) \(e\left(\frac{51}{88}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{57}{176}\right)\) \(e\left(\frac{91}{176}\right)\) \(e\left(\frac{87}{176}\right)\) \(e\left(\frac{65}{88}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{159}{176}\right)\) \(e\left(\frac{17}{176}\right)\)
\(\chi_{2057}(419,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{88}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{161}{176}\right)\) \(e\left(\frac{115}{176}\right)\) \(e\left(\frac{79}{176}\right)\) \(e\left(\frac{57}{88}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{23}{176}\right)\) \(e\left(\frac{153}{176}\right)\)
\(\chi_{2057}(430,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{147}{176}\right)\) \(e\left(\frac{105}{176}\right)\) \(e\left(\frac{141}{176}\right)\) \(e\left(\frac{75}{88}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{21}{176}\right)\) \(e\left(\frac{155}{176}\right)\)
\(\chi_{2057}(452,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{88}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{53}{176}\right)\) \(e\left(\frac{63}{176}\right)\) \(e\left(\frac{155}{176}\right)\) \(e\left(\frac{45}{88}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{83}{176}\right)\) \(e\left(\frac{93}{176}\right)\)
\(\chi_{2057}(496,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{88}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{151}{176}\right)\) \(e\left(\frac{133}{176}\right)\) \(e\left(\frac{73}{176}\right)\) \(e\left(\frac{7}{88}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{97}{176}\right)\) \(e\left(\frac{79}{176}\right)\)
\(\chi_{2057}(507,\cdot)\) \(-1\) \(1\) \(e\left(\frac{45}{88}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{159}{176}\right)\) \(e\left(\frac{13}{176}\right)\) \(e\left(\frac{113}{176}\right)\) \(e\left(\frac{47}{88}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{73}{176}\right)\) \(e\left(\frac{103}{176}\right)\)
\(\chi_{2057}(551,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{88}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{125}{176}\right)\) \(e\left(\frac{39}{176}\right)\) \(e\left(\frac{163}{176}\right)\) \(e\left(\frac{53}{88}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{43}{176}\right)\) \(e\left(\frac{133}{176}\right)\)
\(\chi_{2057}(573,\cdot)\) \(-1\) \(1\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{75}{176}\right)\) \(e\left(\frac{129}{176}\right)\) \(e\left(\frac{133}{176}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{61}{176}\right)\) \(e\left(\frac{115}{176}\right)\)
\(\chi_{2057}(584,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{88}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{105}{176}\right)\) \(e\left(\frac{75}{176}\right)\) \(e\left(\frac{151}{176}\right)\) \(e\left(\frac{41}{88}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{15}{176}\right)\) \(e\left(\frac{161}{176}\right)\)
\(\chi_{2057}(617,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{19}{176}\right)\) \(e\left(\frac{89}{176}\right)\) \(e\left(\frac{29}{176}\right)\) \(e\left(\frac{51}{88}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{53}{176}\right)\) \(e\left(\frac{123}{176}\right)\)
\(\chi_{2057}(639,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{88}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{101}{176}\right)\) \(e\left(\frac{47}{176}\right)\) \(e\left(\frac{43}{176}\right)\) \(e\left(\frac{21}{88}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{115}{176}\right)\) \(e\left(\frac{61}{176}\right)\)
\(\chi_{2057}(683,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{88}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{23}{176}\right)\) \(e\left(\frac{117}{176}\right)\) \(e\left(\frac{137}{176}\right)\) \(e\left(\frac{71}{88}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{129}{176}\right)\) \(e\left(\frac{47}{176}\right)\)
\(\chi_{2057}(694,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{88}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{31}{176}\right)\) \(e\left(\frac{173}{176}\right)\) \(e\left(\frac{1}{176}\right)\) \(e\left(\frac{23}{88}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{105}{176}\right)\) \(e\left(\frac{71}{176}\right)\)
\(\chi_{2057}(738,\cdot)\) \(-1\) \(1\) \(e\left(\frac{39}{88}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{173}{176}\right)\) \(e\left(\frac{23}{176}\right)\) \(e\left(\frac{51}{176}\right)\) \(e\left(\frac{29}{88}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{75}{176}\right)\) \(e\left(\frac{101}{176}\right)\)
\(\chi_{2057}(760,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{88}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{123}{176}\right)\) \(e\left(\frac{113}{176}\right)\) \(e\left(\frac{21}{176}\right)\) \(e\left(\frac{43}{88}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{93}{176}\right)\) \(e\left(\frac{83}{176}\right)\)
\(\chi_{2057}(771,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{88}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{153}{176}\right)\) \(e\left(\frac{59}{176}\right)\) \(e\left(\frac{39}{176}\right)\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{47}{176}\right)\) \(e\left(\frac{129}{176}\right)\)
\(\chi_{2057}(793,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{88}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{81}{176}\right)\) \(e\left(\frac{83}{176}\right)\) \(e\left(\frac{31}{176}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{87}{176}\right)\) \(e\left(\frac{89}{176}\right)\)