sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2057, base_ring=CyclotomicField(880))
M = H._module
chi = DirichletCharacter(H, M([336,55]))
pari:[g,chi] = znchar(Mod(37,2057))
Modulus: | \(2057\) | |
Conductor: | \(2057\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(880\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2057}(5,\cdot)\)
\(\chi_{2057}(14,\cdot)\)
\(\chi_{2057}(20,\cdot)\)
\(\chi_{2057}(31,\cdot)\)
\(\chi_{2057}(37,\cdot)\)
\(\chi_{2057}(48,\cdot)\)
\(\chi_{2057}(58,\cdot)\)
\(\chi_{2057}(71,\cdot)\)
\(\chi_{2057}(75,\cdot)\)
\(\chi_{2057}(80,\cdot)\)
\(\chi_{2057}(82,\cdot)\)
\(\chi_{2057}(91,\cdot)\)
\(\chi_{2057}(92,\cdot)\)
\(\chi_{2057}(97,\cdot)\)
\(\chi_{2057}(108,\cdot)\)
\(\chi_{2057}(113,\cdot)\)
\(\chi_{2057}(114,\cdot)\)
\(\chi_{2057}(125,\cdot)\)
\(\chi_{2057}(126,\cdot)\)
\(\chi_{2057}(141,\cdot)\)
\(\chi_{2057}(146,\cdot)\)
\(\chi_{2057}(147,\cdot)\)
\(\chi_{2057}(158,\cdot)\)
\(\chi_{2057}(159,\cdot)\)
\(\chi_{2057}(163,\cdot)\)
\(\chi_{2057}(180,\cdot)\)
\(\chi_{2057}(181,\cdot)\)
\(\chi_{2057}(190,\cdot)\)
\(\chi_{2057}(192,\cdot)\)
\(\chi_{2057}(201,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((970,122)\) → \((e\left(\frac{21}{55}\right),e\left(\frac{1}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 2057 }(37, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{113}{440}\right)\) | \(e\left(\frac{53}{80}\right)\) | \(e\left(\frac{113}{220}\right)\) | \(e\left(\frac{499}{880}\right)\) | \(e\left(\frac{809}{880}\right)\) | \(e\left(\frac{317}{880}\right)\) | \(e\left(\frac{339}{440}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{145}{176}\right)\) | \(e\left(\frac{31}{176}\right)\) |
sage:chi.jacobi_sum(n)