sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2057, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([73,55]))
pari:[g,chi] = znchar(Mod(305,2057))
| Modulus: | \(2057\) | |
| Conductor: | \(2057\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2057}(50,\cdot)\)
\(\chi_{2057}(84,\cdot)\)
\(\chi_{2057}(101,\cdot)\)
\(\chi_{2057}(237,\cdot)\)
\(\chi_{2057}(271,\cdot)\)
\(\chi_{2057}(288,\cdot)\)
\(\chi_{2057}(305,\cdot)\)
\(\chi_{2057}(424,\cdot)\)
\(\chi_{2057}(458,\cdot)\)
\(\chi_{2057}(492,\cdot)\)
\(\chi_{2057}(611,\cdot)\)
\(\chi_{2057}(662,\cdot)\)
\(\chi_{2057}(679,\cdot)\)
\(\chi_{2057}(798,\cdot)\)
\(\chi_{2057}(832,\cdot)\)
\(\chi_{2057}(849,\cdot)\)
\(\chi_{2057}(866,\cdot)\)
\(\chi_{2057}(985,\cdot)\)
\(\chi_{2057}(1019,\cdot)\)
\(\chi_{2057}(1036,\cdot)\)
\(\chi_{2057}(1053,\cdot)\)
\(\chi_{2057}(1172,\cdot)\)
\(\chi_{2057}(1206,\cdot)\)
\(\chi_{2057}(1223,\cdot)\)
\(\chi_{2057}(1240,\cdot)\)
\(\chi_{2057}(1359,\cdot)\)
\(\chi_{2057}(1393,\cdot)\)
\(\chi_{2057}(1410,\cdot)\)
\(\chi_{2057}(1427,\cdot)\)
\(\chi_{2057}(1580,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((970,122)\) → \((e\left(\frac{73}{110}\right),-1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 2057 }(305, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{67}{110}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{109}{110}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) |
sage:chi.jacobi_sum(n)