Properties

Label 2040.707
Modulus $2040$
Conductor $2040$
Order $16$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2040, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,8,8,4,3]))
 
Copy content pari:[g,chi] = znchar(Mod(707,2040))
 

Basic properties

Modulus: \(2040\)
Conductor: \(2040\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2040.fl

\(\chi_{2040}(227,\cdot)\) \(\chi_{2040}(347,\cdot)\) \(\chi_{2040}(683,\cdot)\) \(\chi_{2040}(707,\cdot)\) \(\chi_{2040}(827,\cdot)\) \(\chi_{2040}(923,\cdot)\) \(\chi_{2040}(1763,\cdot)\) \(\chi_{2040}(2003,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.76924344897355372207607808000000000000.2

Values on generators

\((511,1021,1361,817,241)\) → \((-1,-1,-1,i,e\left(\frac{3}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2040 }(707, a) \) \(1\)\(1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{1}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2040 }(707,a) \;\) at \(\;a = \) e.g. 2