sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2040, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,8,8,4,3]))
pari:[g,chi] = znchar(Mod(707,2040))
| Modulus: | \(2040\) | |
| Conductor: | \(2040\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(16\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2040}(227,\cdot)\)
\(\chi_{2040}(347,\cdot)\)
\(\chi_{2040}(683,\cdot)\)
\(\chi_{2040}(707,\cdot)\)
\(\chi_{2040}(827,\cdot)\)
\(\chi_{2040}(923,\cdot)\)
\(\chi_{2040}(1763,\cdot)\)
\(\chi_{2040}(2003,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,1021,1361,817,241)\) → \((-1,-1,-1,i,e\left(\frac{3}{16}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 2040 }(707, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) |
sage:chi.jacobi_sum(n)