sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2040, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([4,0,0,2,5]))
pari:[g,chi] = znchar(Mod(127,2040))
\(\chi_{2040}(127,\cdot)\)
\(\chi_{2040}(223,\cdot)\)
\(\chi_{2040}(247,\cdot)\)
\(\chi_{2040}(1783,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((511,1021,1361,817,241)\) → \((-1,1,1,i,e\left(\frac{5}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 2040 }(127, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)